Mammalian cellular metabolism is a dynamic process that consists of thousands of interconnected reactions and regulatory interactions. While the architecture of metabolic networks is defined by the genome, actual metabolic activity (i.e. metabolic flux) through the pathways varies greatly. Dynamic reprogramming of metabolism enables cells to meet metabolic needs associated with specific cellular states and cellular functions (such as supporting proliferation or activating immune function), and adapt to changes in the environment. The overarching goal of our research is to understand how mammalian cellular metabolism is reprogrammed in response to changes in the environment and cellular state, and how activities in key metabolic pathways can in turn affect cell function. To study this, we combine systems biology approaches, especially fluxomics and metabolomics, with computational modeling and biochemical and genetic techniques.